

Now, what you will do now we have to read of memory data register to the register 𝑅1 that is

you have to do this part that memory data register value will has to be dumped to register 𝑅1.

So, only after that 𝑀𝐹𝐶 signal has become 1, you can make the memory data register signal as

out. Because before that if you see the memory data signal was a 1 over here in one that is

memory data register in was a 1 that means it was reading from the memory.

This 𝑀𝐹𝐶 signal is saying that the reading is over. So, now, you make 𝑀𝐷𝑅_𝑜𝑢𝑡 = 1 that

means now it will dump the value whatever was in the memory data register which is taken

from the memory to the bus. And then 𝑅1𝑖𝑛 = 1 that means, whatever was in the memory data

register will dump to the register 𝑅1 and this instruction of 𝑀𝑂𝑉 𝑅1, 32 will be over.

So, if you can recollect it look at the figure in a slightly you can think it for some time then

everything will be very clear to you. Then this was a move instruction. Now, let us say that

there is a store instruction move means what we have done, we have taken the value of memory

location 32 whatever was there, we have moved to 𝑅1.

(Refer Slide Time: 42:05)

Now, let us very quickly see that if this is the reverse one that is if there is something in memory

register 𝑅1 sorry if there is some value in 𝑅1, we want to dump it to memory looking at 32; one

was the read operation, next was the right operation very simple. Of course, first the value of

𝑅1 has to be written to 32. So, the register value 𝑅𝑜𝑢𝑡 instruction register has to be made 1,

because the default idea is that whatever instruction is there will be first in the instruction

register. So, therefore, any instruction in a general thumb rule, what is there you have to first

534

make the instruction register out that means, the value of the instruction register have to go to

the memory address register.

Because whenever there is a non immediate mode of operation, so what happens like in this

case the memory location is 32; that means, you have to do something with memory location

32, but where is that values 32 will be there in the very initial case it will be in the instruction

register. So, generally the first micro operation always says that the instruction register out that

means, you have to get the value of the memory location from the instruction register. And it

has to go into the memory address register that is a very de facto standard for most of the cases.

So, the value of 32 from the instruction register will be dumped to the memory instruction

register.

Even if you have looked in this solution also, the same read or write from the memory the first

microinstruction will be more or less will be similar. So, the first microinstruction register

instruction register out will dump the value to the memory register memory address register;

that means, instruction register 32 value will be now dump to the memory address register. So,

now, the memory address knows that value of 32 is there. Now, we have to do something with

32.

Now, in this case, what happens, you have to write; in the previous case what happened it was

a read now it is basically a write; that means, whatever is in the register 𝑅1 has to go to the

memory. So, in now in this case what happens this is the memory, this is the 32 memory

location has to be read and in fact, there is a memory data register.

So, in the read mode from the memory, the memory register is to be read, but is the write

operation, so you have to dump the value over here. So, in this case it will be just the reverse

compared to the previous analysis. So, 𝑀𝐷𝑅 will be actually equal to in. So, now, the memory

read it has to read. So, the memory data register will be in a read mode because it will read

something from the register 𝑅1 and that has to be dumped to the memory.

So, in the previous case memory data register in was a 1 that means what basically what

happens again as I was telling you that the first microinstruction, the second microinstruction

more or less looks similar in case of a read write mode. Because in any case, memory data

register is to be read either it is from the memory or it is from the CPU register. If you are going

for a write read operation, then the memory register will read from the memory if you are going

to go for a write operation to the memory it’s going to read from the register. But anyway

535

memory data register has to read some value which is to be transferred to the memory or it has

to be transferred to the register. So, in this case, memory data register is equal to 1 and 𝑅𝑜𝑢𝑡 =

1.

(Refer Slide Time: 45:12)

So, in case what happens in the second case, so if you look at it, so this is your register memory

data register, which is in mode, and your register 𝑅1 is in the out mode. So, the register will

dump the value which will go to the memory data register, but this is a memory write operation.

If it is a memory read operation, then actually in fact this it will not be a 𝑅1 in fact it will be a

memory, which will dump it to the value to the memory buffer register, which will go to the

memory that was the previous case.

But it now second case, what happens, memory data register is in mode and who is going to

write it the the register 𝑅1. So, 𝑅1 out will be one. So, in that case, it will be going in this case.

And very important we have to know one point over here, which I am going to emphasize

basically first microinstruction 𝑅𝑜𝑢𝑡 = 1 that is you are dumping the value of 32 to memory

address register. Before going to the second microinstruction, 𝑅𝑜𝑢𝑡 𝐼𝑅𝑜𝑢𝑡 has to be made to 0.

Otherwise what is going to happen otherwise there will be a conflict what the instruction

register as well as 𝑅1 is going to write together to the CPU bus that should not happen. Before

going to the value here this has to be made 0, but now in this case 𝑅𝑜𝑢𝑡 is 1, this one is in 0. So,

basically now 𝑅𝑜𝑢𝑡 is going to write to the memory data register. And now we are giving a

signal called write because the memory has to be in right mode.

536

(Refer Slide Time: 46:40)

Now, what happens so now your memory data register already has the value, which is in the

register. So, this phase is over. So, last microinstruction basically it will let us see what it will

do this is your instruction this is your bus now you are already memory the register has the

value which is from 𝑅1 and you also you have given the write command. The write command

is basically an external signal; all others are internal signals which is generated by the control

unit. Now, 𝑀𝐷𝑅𝑜𝑢𝑡 = 1. So, now, it will start dumping the value.

Now, of course, the memory is already in the read mode and memory data register is writing

to the control bus or sorry in fact it will be the data bus which is an external bus which will be

connecting the CPU to the memory and already the write signal is there. But immediately you

cannot withdraw this signal memory data out has been made one. So, the memory register is

writing to the control bus, but immediately you cannot make the 𝑀𝐷𝑅𝑜𝑢𝑡= 0 you have to wait

for some amount of time. To an external bus external control bus, the memory will tell that

𝑀𝐹𝐶 that is going to come by a external control bus to the CPU telling that my read is over or

sorry yeah my read is over; that means, I have already read the value of register 𝑅1 from a

memory location 32 now you can free your memory data register.

After that case only your memory data register output will be made 0, in fact, initially it was

one. So, memory data register was dumping which was going to the memory after some amount

of time when this 𝑊𝐹𝑀𝐶 signal will be coming from the external control bus to the CPU sorry

to control unit of the CPU it will relinquish the signal and 𝑀𝐷𝑅𝑜𝑢𝑡 will now become equal to

537

basically your 0. No, now it is free and whole value of 𝑅1 has been dumped to memory location

32.

(Refer Slide Time: 48:10)

So, again I will quickly look at the control sequence because it is more or less similar. So, in

fact, this is the positive edge of the clock. First instruction register has to be 𝑅𝑜𝑢𝑡 will be one

same procedure; in the next clock edge as memory address register is already one. So, the value

of 32 will be dumped in the address. From here, it is slightly changing because it is a memory

write operation now 𝑅𝑖𝑛= 1. So, now from this at this clock edge basically as I have made this

memory data register in one at this point at this clock edge what is going to happen is that the

value of the register 𝑅1 will be out to the control bus. And already memory data register in

have been made 1 that means, at this clock edge at this positive clock edge what is going to

happen, the value of 𝑅1 will be going to the memory data register in.

Now, memory data register in will be fed with the value of register one, but where the memory

data register will write to the memory which is in the memory address register which is the

value of 32. So, 𝑅1 out will make the value of register 𝑅1 being dumped to the bus which will

go to memory data register and memory data register will write the value that is what we are

saying. The data whatever is in the 𝑅1 data has now moved to memory data register which is

happening in this clock edge. And this memory register will be writing it to the memory. So,

the memory write signal has been made one.

538

Now, at this clock edge, basically as I told you at this clock edge, the data of 𝑅1 has been

moved to the memory data register write signal has been enabled. So, now, I am making the

𝑀𝐷𝑅 = 1 that means, now the memory data register is going to write to the memory. So, I am

making the memory data register from input mode to output mode which I am making it 1. So,

in fact, at this clock edge if you compare this is the rising clock edge after this signal after the

𝑀𝐷𝑅 signal equal to out, this is the clock edge. At this clock edge, your memory will read the

value from the memory data register, because memory data register out signal = one and we

are in a write mode. So, at this clock edge, this is the positive clock edge your memory is going

to read the data from the memory data register.

But again immediately we cannot make 𝑀𝐷𝑅𝑜𝑢𝑡 = 0, we have to wait for some amount of time

when the 𝑀𝐹𝐶 signal will be say memory has been written. So, after this clock edge basically

you can again I have not shown this, but again you can in this point you can make this signal

down over here. This signal can be made down at this point, because there is no point of keeping

the value over here. So, simply the memory has been written.

So, that brings us to the end of this unit we have taken a single bus architecture and we have

taken some very simple instructions which are macro instructions. We have broken down into

the microinstructions, and we have seen what are the basic microinstructions or what are the

control signals generated, and how data transfers operates happens between one register to

another register, one memory to another memory and via register. And also we have seen that

if you read to a memory, if you write to the memory what are basically controls signal involved.

So in fact, in a nutshell, today we have got some idea using a very concrete digital fundamentals

how basically a control unit works in terms of signals. So, before we close down as we are all

discuss about some of the questions and try to understand how the objectives are satisfied. So,

let us take some few examples like provide a generic model of the control unit.

539

(Refer Slide Time: 51:22)

Explain the groups of input output of these signals and give some examples, of course, which

will satisfy your knowledge objective like different categories of input and output signals as a

comprehension. You should be able to design it as of sorry the comprehensive objective will

be able to indicate the control signals to synchronize the speed etcetera. So, if you are going if

you are able to answer the first question that what are the different signals these two objectives

are satisfied. If I ask you to draw a CPU with a single bus organization, of course, this will

again satisfy the next two objectives.

Then in this question 2 we have some parts we are saying that how registers are connected to

the CPU and how basically signals move over there, and then we see that how they are

synchronized in time. So, if you are able to design a single bus CPU, then we explain how data

is moving from register to register, register to memory, and how they are all synchronizing

with time as we have seen that everything happens at the positive edge of a clock. So, even if

I have changed the signals like 𝑅𝑖𝑛 out, memory buffer register is going to in, but they will all

take effect in the next coming edge.

So, if you are able to design that of course, you are going to satisfy this synthesis objective that

is design the timing sequence generator to carry out the proper micro operations at the proper

time. So, in fact, if the four questions you are able to answer, you are going to you are actually

meeting all the objectives. With this, we come to this end of this unit; and from next unit

540

onwards, we will be looking more into the depth of how control signals are generated if there

is multiple buses, what are the changes expected and so forth.

Thank you.

541

